【POSデータから学ぶ】アソシエーション分析
POSデータを使った具体例を通して、支持度・信頼度・リフト値の3つの指標をご紹介します。特に、「それぞれが高いとどういう意味なのか」を明確に理解しましょう。
目次
イントロダクション
「ビールとおむつが一緒に買われる」という有名な話を聞いたことがありますか?そのような物事同士の関係性を発見する手法がアソシエーション分析です。
この記事では、POSデータを使った具体例を通して、支持度・信頼度・リフト値の3つの指標をご紹介します。特に、「それぞれが高いとどういう意味なのか」を明確に理解しましょう。
アソシエーション分析とは
アソシエーション分析(相関ルール分析、マーケットバスケット分析)は、大量の取引データから「一緒に買われやすい商品の組み合わせ」を発見する手法です。
代表的な活用例としては以下が挙げられます。
- 小売業:商品の陳列配置の最適化
- ECサイト:レコメンデーション(「この商品を買った人はこんな商品も…」)
- マーケティング:クロスセル戦略の立案
分析指標
アソシエーションルールの表記
- 「A → B」という形式で表記します。
- 左辺(条件部): A
- 右辺(結果部): B
- 意味: Aを買った人がBも買う傾向

支持度(Support)
- 「商品Aと商品Bが一緒に購入される割合」
- 支持度 = 商品Aと商品Bを一緒に購入した顧客の数 ÷ 全体の顧客数
信頼度(Confidence)
- 「商品Aを購入した人数の中で商品Aと商品Bを同時に購入する人の割合」
- 信頼度 = 商品Aと商品Bを同時に購入した顧客の数 ÷ 商品Aを購入した顧客数
- 商品Aと商品Bの購入者数が少ないと、信頼度は大きくなる。→ 支持度を確認
- 商品Bが人気商品だった場合、人気に引っ張られて信頼度が大きくなる。→ リフト値を確認
リフト値(Lift)
- 「その組み合わせの共起がどれだけ“偶然以上”に起きているか」
- リフト値 = 信頼度(A→B) ÷ 商品Bの出現率
POSデータの例で理解する
あるスーパーの1日における取引データを見てみましょう。

基本情報:
- 全会計数: 10件
- パンを購入: 7件
- 牛乳を購入: 6件
- パンと牛乳を両方購入: 5件
3つの指標:支持度・信頼度・リフト値
アソシエーションルール「パン → 牛乳」を評価する3つの指標を見ていきましょう。
指標の対比表
支持度(Support)
Support(パン → 牛乳) = P(パン ∩ 牛乳) = パンと牛乳を両方購入した会計数 / 全会計数
計算: 5 / 10 = 0.5 (50%)
意味: 「パンと牛乳」の組み合わせが全取引の50%で発生している
注意点: 支持度が低すぎるルールは、サンプル数が少ないため偶然の可能性があります。実務では最低支持度(min-support)を設定して、極端に出現頻度の低いパターンを除外します。
信頼度(Confidence)
計算: 5 / 7 = 0.714 (71.4%)
意味: パンを買った人のうち、71.4%が牛乳も買っている
信頼度の落とし穴
信頼度だけで判断するときには注意が必要です。
例: 商品Aを買った人が1人だけで、その人がたまたま商品Bも買っていた場合、信頼度は100%になります。しかしこの1件だけでは「Aを買う人は必ずBも買う」と結論づけるのは危険です。
このように母数(商品Aを買った人の数)が極端に小さい場合に偶然高い値になってしまうことがあります。したがって、信頼度を見る際には「その組み合わせがどれくらい頻繁に起きているか(支持度)」も併せて考えることが重要です。
もう一つの注意点: 信頼度が高くても、それは牛乳自体が人気商品なだけかもしれません!
リフト値(Lift)
Lift(パン → 牛乳) = P(牛乳|パン) / P(牛乳) = 信頼度 / 牛乳の出現率
まず牛乳の出現率を計算: 6 / 10 = 0.6 (60%)
計算: 0.714 / 0.6 = 1.19
意味: パンを買うと、牛乳を買う確率が通常の1.19倍になる
別の表現: P(A ∩ B) / [P(A) × P(B)] とも書けます。これは「独立な場合に比べて何倍ほど一緒に起きているか」という比率を表しています。
リフト値の解釈
実務でのアプローチ
典型的な組み合わせパターンと、解釈は以下の通りです。

また、閾値を設けることも多いです!

※ ただし、業界や目的により値の調整が必要です。
その他の応用分野
アソシエーション分析は購買データ以外にも応用されています。

よくある誤解と注意点
相関 ≠ 因果関係
アソシエーション分析は「一緒に買われる傾向」を見つけるだけで、因果関係は証明しません。
例: 「ビール → おむつ」のリフトが高くても、「ビールを買わせればおむつが売れる」わけではない。おそらく「週末に父親が家族のために買い物をする」という共通の背景要因があるだけです。
FAQ
Q: 支持度、信頼度、リフト値のどれが最も重要?
A: リフト値が最も重要です。リフト値が1以下なら、他がどんなに高くても意味のないルールです。ただし、3つをバランス良く見ることが実務では重要です。
Q: リフト値が高ければ必ず施策に使える?
A: いいえ。支持度が極端に低いと、影響範囲が小さすぎて実用的でない場合があります。また、母数が少なすぎると偶然の可能性も。3つの指標を総合的に判断しましょう。
Q: 「A→B」と「B→A」のリフト値は同じ?
A: 同じです。リフト値は対称的な指標です。しかし、信頼度は異なります。
Q: 負の相関(リフト<1)も使える?
A: はい!例えば「商品Aを買った人は商品Bを買わない」という情報も、在庫管理や販促除外に使えます。
Q: 信頼度が100%なのにリフト値が1以下?
A: あります。Bがもともと超人気商品(ほぼ全員が買う)なら、Aを買ってもBの購入確率は平均並みなのでリフト値は1前後になります。
さいごに
3指標の意味まとめ
- 支持度: 全体における組み合わせの出現頻度(高いほど売上全体への影響大)
- 信頼度: 「AならB」の起こりやすさ=条件付き確率(高いほどAの購入者へのBの推薦効果大)
- リフト値: 関連性の強さ=独立の場合と比較した発生倍率(1超で偶然以上の結びつき)
この記事で、アソシエーション分析の3つの指標を解説しました。POSデータから顧客の購買パターンを発見し、ビジネスに活かしましょう!


